Parabolic and hermite cubic finite elements: a flexible technique for deformable models
نویسندگان
چکیده
Uejormable models of elastic structures have been proposed for use in image analysis. The models are based on a minimum energy principle which incorporates both image information and "high level" knowledge of the structures involved. This paper reports a further development of the Finite Element Method (FEM) for use in active contour models. It is shown that parabolic and cubic Finite Elements provide a versatile technique for implementing deformable models. The method is demonstrated on MR and x-ray images of brain sections.
منابع مشابه
Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملA three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional problems has been limited to ventricular models with simple topologies. Here, we utilized a subdivision surface scheme and derived a generalization of the "local-to-global" derivative mapping scheme of cubic...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملSolution of Non Linear Singular Perturbation Equation Using Hermite Collocation Method
A numerical method for solving second order, transient, parabolic partial differential equation is presented. The spatial discretization is based on Hermite collocation method (HCM). It is a combination of orthogonal collocation method and piecewise cubic Hermite interpolating polynomials. The solution is obtained in terms of cubic Hermite interpolating basis. Numerical results have been plotte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990